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BN altemants with borons and nitrogens fully replacing altemant sets of carbons in an altemant hydrocarbon 
form a special class of species of natural interest. The Huckel model for general BN altemants and certain 
extended Huckel models for “regular” BN altemants are shown to be simply soluble in terms of the eigensolutions 
for the corresponding altemant hydrocarbons. The difference in the electronegativities for boron and nitrogen 
implies the opening of HOMO-LUMO gaps for altemant BN clusters-or equivalently the opening of band gaps 
(at the Fermi energy) for BN altemant polymers. Infinite classes first of octahedral-symmetry fullerenoid cages 
and second of “buckytube” polymers are considered. 

1. Introduction 

Altemant hydrocarbons are those conjugated hydrocarbons 
whose carbon atoms can be formally divided into two classes 
(“starred” and “unstarred”) such that each atom has only atoms 
of the other class as nearest neighbors. This class of molecules 
has been extensively studied both experimentally and theoreti- 
cally for over 50 years. Since boron and nitrogen bracket carbon 
in the periodic chart, in their numbers of valence electrons and 
in their electronegativities, altemant B-N compounds (obtainable 
for any altemant hydrocarbon by substitution of boron for one 
class of carbons and nitrogen for all of the other) can often be 
found to exhibit properties parallelling those of the correspond- 
ing organics-the classic example here being borazine &”& 
, the analogue of benzene. See e.g. Niedenzu and Dawson’ or 
Geanangel and Shore.* Also BN exists in forms analogous both 
to diamond and to graphite, so that there has been much work3s4 
on these structures-with a view to technological applications 
such as high-temperature wide-band-gap semiconductors. Thus 
it seems natural to ask whether boron-nitride analogs exist for 
newer carbon allotropes such as Buckminsterfullerene, c60.  

A trivial answer to this question is “no”. Since any fullerene 
cage contains (essentially by definition) 12 pentagonal rings and 
hence must be nonaltemant, a strict BN altemant cannot exist 
for such fullerene cages. In correspondence with Ca,  however, 
an elegant analogue (B24N24C12) with just a portion of the 
carbons replaced has been pr~posed,~ and low-doped cages 
Cw-,Bx and Cw-,N, with x = 1, 2 have been observed6 and 
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computations made.7 The B3&4 species proposed by La Placa 
et aL8 deviates from our interests in having adjacent B atoms 
and consequent destabilizing homonuclear bonds. 

Another answer to the question of BN altemant fullerene- 
like cages is “yes”-if we forego the usual (twelve) pentagonal 
rings and replace them with six square rings. The simplest such 
possibilities here are the cube and the truncated octahedron, as 
indeed have already been theoretically ~ tud ied .~  In fact, these 
two species are but the first members of an infinite family of 
octahedral-symmetry BN altemant cages, as we discuss in 
section 3. 

There is yet another “graphitic” infinite allotropic form for 
carbon, the buckytube, which is obtained by wrapping a 
hexagonal net of carbon atoms onto a long tube. Such quasi- 
one-dimensional tubes have been found experimentally l o  and 
are the target of much present work. 

Since these structures are altemant, BN analogues may exist. 
In section 4, we discuss these BN-tube analogs utilizing method- 
ologies employed previously to characterize buckytubes.” 
While we employ and solve analytically the Huckel (band- 
theoretic) model, the method generalizes (due to the symmetry) 
to any one-electron model with one electron per site. But first 
in section 2 we consider the general case of BN altemants, 
extending some earlier results of Bochvar et al. 12,13 
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2. The Huckel Model for BN Alternants 

In general, for any altemant BN system the simplest Huckel 
Hamiltonian (for molecular graph G) may be written 

Zhu et al. 

with A being the adjacency matrix 

1; i - j in G 
‘1 I 0; i j i n  G 

A , .  = 

and with being D a diagonal matrix whose elements are 

a,; i = j  a boron 
D.. = a,; i = j a nitrogen (3) I O ; i # j  

‘I 

Here P is a “resonance” integral and a,, a, are “Coulomb” 
integrals. 

The eigenproblem for the adjacency matrix is 

By the Coulson-Rushbrooke pairing theoremI4 Huckel eigen- 
solutions for altemant hydrocarbons occur in pairs (at least for 
a # 0 )  

where IA,N) and JA,B), respectively, have nonzero coefficients 
only at “starred” and “unstarred” sites (to be identified as N 
and B). As it tums out, the two-dimensional space spanned by 
a pair (Ia,N), IA,B)} is invariant under the action of the BN- 
altemant Hamiltonian 

and 

which can be easily seen by substitution for IA,N) and IAB) in 
terms of IhA). Thus the eigenproblem reduces generally to the 
treatment of a set of 2 x 2 matrices 

where I are eigenvalues to the adjacency matrix A alone. The 
Hamiltonian eigenvalues are 
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€ * = a i G q @  
ti = (a, + a,)/2 (9) 

A = (a, - aN)/2 

with similar to that for carbon and A nearlyI5 the size of IpI. 
Via a related argument, Bochvar and StankevichI2 reached this 
same result some time ago. 

A special point concems the states corresponding to non- 
bonding MOs for the hydrocarbons-Le., the case with A = 0. 
The Coulson-Rushbrooke result of (5) is based upon properties 
of the so-called alternancy operator d which changes orbital 
signs on starred (N) sites (so that d is like the D operator but 
with a N  and a, replaced by -1 and +1). The readily seen 
anticommutation of d with A leads directly to the result of ( 5 )  
with A t 0, and the same argument still tells us that application 
of d to a A = 0-eigenvalue eigenvector 10) yields back an 
eigenvector with eigenvalue -2 = 0-it is just that the resultant 
eigenvector might be the same one (up to a sign). In any event, 
a linearly independent set of 0-eigenvalue eigenvectors may be 
chosen each entirely localized on one set (B or N) of sites. Thus 
those on the B subset are acted on by the full model Hamiltonian 
to give an eigenvalue of E = a, , while for those on the N 
subset yield E = a, . Overall, we then still have a gap of at 
least 2A with the numbers of levels below and above this gap 
being respectively the numbers of nitrogen and boron atoms. 
Thus for neutral BN altemants, the HOMO-LUMO (or band) 
gap is at least 2A. That is, there are no radicaloid BN altemants. 

The question arises as to whether any of the general results 
of the preceding two paragraphs extend beyond the simple 
Huckel model. First, if nearest-neighbor resonance integrals 
are allowed to vary with individual BN bond lengths, our results 
and in particular (9) still apply-all one need to do is let the 
unit elements of A vary away from 1 and still denote its 
eigenvalues by A. The same proofs apply and the HOMO- 
LUMO (or band) gap remains at least 2A. 

If we specialize to the case of regular BN altemants wherein 
all B and N atoms have the same degree din the altemant graph, 
then related results may be proved for an extended Huckel 
model. Many BN altemants are not so regular,’%* but the cyclic 
ones (which have historically played a key role) are, as also 
are the cages and tubes of sections 3 and 4. The simple standard 
extension of the Huckel modelI6 takes P-integrals to next-nearest 
neighbors and utilizes an overlap matrix 

S = l + s A  (10) 

with the nearest-neighbor overlap integral s 0.25. Now (A2 
- dl) (with 1 the identity matrix and d the degree of connection) 
may be seen to connect next-nearest neighbor sites, and if there 
are no four-membered rings, all the nonzero elements of A* - 
dl take the same value 1. In this case, we may write our 
extended Huckel model Hamiltonian matrix as 

He, = D + PA + p’(A2 - d l )  (1 1) 

with p’ a next-nearest neighbor resonance integral. Following 
the procedure in (6) and (7), one similarly arrives at the 
representation of Hex on the same basis { IA,N), IA,B)} 

(15) See, e.g: Streitweiser, A,, Jr. Molecular Orbiral Theory; John Wiley 
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and of course S has a like-blocked representation 

Thus our extended Huckel eigenvalues are 

- $A2 l /A2  + (/3 - saB)@ - 
E* = (14) 

1 - s2A2 

where a, U N ,  and UB are modified “Coulomb” parameters 

a,=aN+p’L2-B,d 

a = (aN + UB)/2 

Of course not all of the next-nearest neighbors have resonance 
integrals exactly as assumed in (1 l), but it is only a correction 
itself which will be best for either regular-polygon cycles or 
for benzenoid structures, including those of section 4. Again 
presuming that the minimum possible HOMO-LUMO gap 
corresponds to 1 = 0, we see from (14) that it must still be at 
least of size 2A. Refinement of the Huckel model evidently 
introduces no tendency toward radicaloid behavior of regular 
BN altemants. 

3. “Octahedral-Symmetry” Fullerenoid Cages 

All of these cages are to have models constructable by cutting 
equal equilateral triangular fragments from the honeycomb 
lattice and then pasting eight such fragments onto the faces of 
an octahedron such that the cut bonds match together on the 
boundaries of the faces. Indeed this is much the same scheme 
as already used to construct icosahedral-symmetry fullerene 

The equilateral triangles cut from the (graphitic) 
honeycomb lattice have the apices of each triangle in the centers 
of hexagonal faces, as indicated in Figure 1. The possible 
triangles are identified by an indication of the location of one 
of such a triangle’s apices relative to another of its apices. This 
is conveniently specified by the length of a walk along 
“principal” directions oriented from center-to-center of adjacent 
hexagons on the underlying honeycomb lattice. Needing only 
two such principal directions (for a two-dimensional lattice), 
we choose the first to be oriented nonintemally (to the triangle) 
as directly as possible from the first to the second apex, while 
the second direction is oriented at 120” to the first-and all are 
further chosen so that the number of h > 0 steps taken in the 
first direction is at least as great as the number k of steps taken 
in the second direction (as one proceeds from the first to the 
second apex). For instance, the triangles of Figure 1 are of 
type (h, k )  = ( 2 ,  0) and the one of Figure 2 is of type (3, 2) .  

Thus we have identified an infinite class of “octahedral- 
symmetry” cages from which BN alternants may be constructed. 

(17) (a) Goldberg, M. Tohoku Math. J.  1937, 43, 104. (b) Coxeter, H. S. 
M. In A Spectrum of Mathematics; Butcher, J .  C.,  Ed.; Auckland 
University Press: Auckland, 1971. 

(18) Klein, D. J.; Seitz, W. A.; Schmalz, T. G. Nature 1986, 323, 703. 
(19) Fowler, P. W. Chem. Phys. Lett. 1986, 131, 444. 

Figure 1. Portion of the honeycomb lattice showing eight triangles to 
be joined together on the eight faces of an octahedron. When this is 
done the triangle’s edges with the same label (a, /3, y ,  6, or E )  will 
join. 

Figure 2. Triangle of type (h,  k)  = (3, 2 )  drawn with solid lines. The 
dotted lines indicate the h = 3 steps and k = 2 steps in consecutive 
“principal” directions to move from one triangle apex to the next. 

The usual point-group symmetry is just D3h, but if the remaining 
elements of o h  are augmented with a “color” change between 
B and N, one obtains an octahedral symmetry, which has 
consequences20 reflected in Hamiltonian eigenspectra. These 
cages each correspond to an ordered pair of integers (h, k )  such 
that 

Each cage has 

v = 8(h2 + kh + k2) (17) 

vertices of which half are B-sites and half are N-sites. Each 
cage has six square faces at the apices of the underlying 
octahedron while all (or any) other faces are hexagonal. Those 
with k = 0 or k = h are (or, if not distorted, can be) achiral 
while all others are necessarily chiral. For these latter we could 
utilize the pair (k,  h )  if we wished to distinguish mirror images. 
A very reasonable coordinate representation of the cages may 
be readily obtained using the scheme of Manolopolous and 
Fowler2’ -this for our present case simply means using the 

(20) (a) Mallion, R. B.; Schwenk, A. S.; TrinajstiC, N. In Recent Advances 
in Graph Theory; Fiedler, M., Ed.; Academia: Prague, 1977; p 345. 
(b) Klein, D. J. ;  ZivkoviC, T. In?. J .  Quantum Chem. 1990, 37, 423. 
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Figure 3. The three octahedral symmetry cages, from top to bottom, 
with (11, k) = (2. O ) ,  (2, I ) ,  (2, 2). 

triple of eigenvector components of the highest tl-symmetry 
eigenvectors to A as the coordinates of the various atomic 
vertices. In Figure 3 we show the three cages with h = 2. 
Further, following earlier arguments,I7 it may be seen that the 
described octahedral-symmetry polyhedron cages are all those 
that are possible with four- and six-sided faces only. Finally, 
the arguments of the preceding section establish that all these 
cages are stable with a large HOMO-LUMO gap (exceeding 
2A, at least within the Huckel and slightly extended Huckel 
models, though the corresponding octahedral-symmetry carbon 
cages often have a zero band gap due to symmetry). This is in 
agreement with the more sophisticated computations earlier 
reported on the h = k = 1 cage.7 

4. Band Structure of BN Buckytubes 

In section 2 we showed that the eigenvectors and eigenvalues 
for BN analogs can immediately be obtained from those for 
the related buckytube for which results have already been 
analytically determined.’ I We therefore here only briefly review 
the symmetry treatment for hexagonal wrappings of tubes. 

(2 I ) Manolopoulos. D. E.: Fowler. P. W. J. Chem. Phys. 1992, 96. 7603. 

Figure 4. The 2-site reduced unit cell enclosed within dotted lines. 
Also shown are the directions taken to make the t+ and t -  counts of 
the text. 

Figure 4 shows the two-site (diamond-shaped) reduced unit 
cell where on each site there is a n-like orbital oriented normal 
to the tube surface. In general, the Huckel resonance integrals 
along different directions will be different but here we take them 
all to be equal (though the general treatment here and in section 
2 is not dependent on this assumption). Now any tube is 
characterized by the values t+ and t- (t+ 1 t-) which are the 
lengths of paths oriented along “principal” directions through 
the centers of adjacent hexagons, much as the paths in section 
3. For two such paths radiating (at 120” to one another) from 
one hexagon, the two paths will eventually intersect (if they 
are chosen not to wind in opposite directions along the tube 
and if we have not gone to the “planar” limit). Letting t+ and 
t- be the larger and lesser (or equal) numbers of steps along 
the two paths uniquely specifies the tubes. Here then we have 

(in an interesting analogy to (16)). Here (t+, t - )  determine a 
tubes’ “he1icity”-again t- = 0 and t+ = t- both correspond to 
purely achiral rotationally symmetric tubes (Figure 5a,e) whereas 
td  = t+ - t- > 0 implies helical structures (Figure 5b-d). For 
a standard lattice (Le., the bonds on a hexagon have the same 
length), the tube radius r is given (from elementary trigonometric 
arguments) as 

where I is the nearest-neighbor distance (Le., the in-plane bond 
length). 

From section 2 and ref 11  we therefore obtain the band 
structure for BN buckytubes 

where a and A are given in (9) and 

Here also K is a (essentially continuous) wavevector, ranging 
from -n to +n and k is a quasi-discrete quantity with values 
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E 

Figure 5. Portions of BN-altemant buckytubes, with different values 
of ( t - .  1 - ) .  from top to bottom: (a) (12.0); (b) (12, I ) ;  (c) (12, 2); (d) 
(6. 5): ( e )  (6. 6 ) .  

[%; i f t -=Oandm=O,  1 ,..., t+ 

2nm t+K “=I- +- ; i f t -#Oandm=O,  1 ,..., t- 
t- t- 

L 
The band structures for the tubes of Figure 5 are given in Figure 
6 when aB = as = 0 and in Figure 7 when aB = - aN = 1/31. 
It is seen in all cases that the band gap grows as the 
electronegativity difference grows. The case with t+ = 12 and 
t- = 0 shows the minimum band gap Cp) due to the presence 
of A in eq 20. In the carbon tube, these would have zero band 
gap. (The presence of fewer bands when t- = 1,2 corresponds 
to the fact that for t-  = 1 the tube can be viewed as being 
generated by a single helical hexagonal strip winding around 
the tube so that the surface is completely covered while t- = 2 
would generate the tube via two interfacing helicies.) Much 

k 

k 

k 

k 

k 

Figure 6. Bands for the homopolar (carbonaceous species with aR = 
aN = 0) for the buckytube structures of Figure 5. 

the same results apply with the extended Huckel model, as 
indicated in Figure 8. As a consequence, all these BN-altemant 
buckytubes are insulators, at least when undoped. 

With the introduction of impurities, such as 0, which in fact 
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Figure 7. Simple Hiickel bands for the BN-altemant structures of 
Figure 5.  

often occurs with the chemical-vapor deposited BN films: the 
possibility of semiconduction arises. The introduction of 
“softer” impurities such as S or C we believe would offer more 
likelihood for delocalization. Indeed as the level of carbon- 

‘ F G  -71 

- 31 

-71 I x .  

Figure 8. Extended Hiickel n-bands for the BN altemants of Figure 
5 .  

doping increases the band gap can ultimately be closed, at 
composition CBN where one-third of the B atoms and one- 
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third of the N atoms are (suitably) replaced by C atoms. 
Evidently C introduces either electrons or holes in a valence 
bond as it substitutes for B or N. Moreover, such ideas should 
be relevant in understanding recently synthesized C,B,N, 
nanotubes.22 

5. Summary 

A general approach for BN analogs of altemant hydrocarbons 
yields via (9) eigenvalues (and orbitals) depending only on 
corresponding Hiickel eigenvalues and the electronegativity 
parameters of B and N. When applied to the case of buckytube 
BN analogs, the results remove the zero band gaps found for 
some buckytubes and as is found also in more elaborate band- 
theoretic computation for special-case buckytube structures.23 

(22) Stephan, 0.; Ajayan, P. M.; Colliex, C.; Redlich, Ph.; Lambert, J. 
M.; Bernier, P.; Lefin, P. Science 1994, 266, 1683. 
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The results, however, imply many similarities between carbon 
and altemant BN tubes and suggest that these are stable species 
and worthy of synthesis. Success in generating BN tubes might 
provide clues to the mechanisms for carbon tube formation via 
the richer chemical structures present in BN tubes. 
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